Acta Crystallographica Section E

Structure Reports
 Online

15-(4-Chlorobenzylamino)-2-methoxypodo-carpa-8,11,13-trien-15-one

ISSN 1600-5368

Nicole John, Raymond J. Butcher and Oladapo Bakare*

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: obakare@howard.edu

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.090$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]At 93 K , the benzylic $\mathrm{C}-\mathrm{N}$ bond of the title compound [systematic name: N-(4-chlorobenzyl)-6-methoxy-1,4a-di-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxamide], $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClNO}_{2}$, adopts almost perfect coplanarity with the amide carbonyl linkage, the dihedral angle between the $\mathrm{C}-\mathrm{N}-\mathrm{C}=\mathrm{O}$ planes being only $2.5(3)^{\circ}$. There is weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the two independent molecules comprising the asymmetric unit involving the carbonyl O atoms; this extends to link neighboring molecules into a chain.

Comment

As part of our anti-inflammatory and anticancer discovery program, we are exploring the derivatization of the C-4 carboxyl group of podocarpic acid (Bakare et al., 2005) in order to design new molecules that can modulate the lipoxygenase and cyclooxygenase pathways. Consequently, the title compound, (I), was synthesized as one of a series of amide derivatives under investigation; its structure is reported here.

(I)

The geometric conformation parameters of the three fused six-membered rings in each of the two independent molecules comprising the crystallographic asymmetric unit of (I) (Fig. 1 and Table 1) are similar to those observed previously (Bakare et al., 2005; Couldwell et al., 1985; Mondal et al., 2003)•In addition, the benzylic carbon-C19 to amide-N1 bond is almost coplanar with the amide carbonyl $\mathrm{C} 15-\mathrm{O} 1$ bond, with a dihedral angle of $2.5(3)^{\circ}$. This near coplanarity is probably due to partial double-bond character of the $\mathrm{C} 15-\mathrm{N} 1$ bond with bond lengths of 1.348 (2) and 1.350 (2) \AA for the two independent molecules. The major difference between the independent molecules is evident from Fig. 1, which shows a signifcant twist about the $\mathrm{C} 4-\mathrm{C} 15$ bond. There are weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between N and O 1 in adjacent molecules, resulting in the formation of chains along the b axis (Fig. 2 and Table 2).

Experimental

To sodium hydride ($\mathrm{NaH}, 100 \mathrm{mg}, 4.16 \mathrm{mmol}$) was added a solution of 12-methoxypodocarpa-8,11,13-trien-15-oic acid ($537 \mathrm{mg}, 1.86 \mathrm{mmol}$) in dry benzene (13 ml). The resulting mixture was stirred for 30 min ,

Received 23 June 2006
Accepted 25 August 2006
after which oxalyl chloride (2 ml) was slowly added and stirring continued for an additional 1 h . The reaction mixture was filtered and the filtrate concentrated in vacuo to give as a yellow oil, the acid chloride, 12-methoxypodocarpa-8,11,13-trienoyl chloride. Dry benzene (5 ml) was added to the residue and the solvent removed again in vacuo. The acid chloride, in benzene, was added slowly to a stirred solution of 4 -chlorobenzylamine (in excess) in dry benzene $(10 \mathrm{ml})$ at 273 K . The mixture was then allowed to warm to room temperature and stirred for 24 h before being filtered. The volatiles were removed in vacuo and the residue treated with hexane to give a white solid, which was purified by recrystallization from a solvent mixture of ethanol and distilled water (55\%).

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClNO}_{2}$
$M_{r}=411.95$
Triclinic, $P 1$
$a=9.8466$ (11) \AA
$b=10.2147$ (10) \AA
$c=10.8492(12) \AA$
$\alpha=84.224$ (2) ${ }^{\circ}$
$\beta=80.232(2)^{\circ}$
$\gamma=82.956(2)^{\circ}$

Data collection

Bruker SMART 1K CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.878, T_{\text {max }}=1$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.04$
6817 reflections
529 parameters
H-atom parameters constrained
$V=1063.7$ (2) \AA^{3}
$Z=2$
$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=93$ (2) K
Chunk, colorless
$0.44 \times 0.33 \times 0.23 \mathrm{~mm}$

8349 measured reflections 6817 independent reflections 6495 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=28.2^{\circ}$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0716 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1588 Friedel pairs
Flack parameter: 0.04 (4)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 2 A-\mathrm{C} 12 A$	$1.378(3)$	$\mathrm{O} 2 B-\mathrm{C} 12 B$	$1.375(2)$
$\mathrm{O} 2 A-\mathrm{C} 18 A$	$1.413(3)$	$\mathrm{O} 2 B-\mathrm{C} 18 B$	$1.430(2)$
$\mathrm{O} 1 A-\mathrm{C} 15 A$	$1.233(2)$	$\mathrm{O} 1 B-\mathrm{C} 15 B$	$1.232(2)$
$\mathrm{N} 1 A-\mathrm{C} 15 A$	$1.348(2)$	$\mathrm{N} 1 B-\mathrm{C} 15 B$	$1.350(2)$
$\mathrm{N} 1 A-\mathrm{C} 19 A$	$1.462(3)$	$\mathrm{N} 1 B-\mathrm{C} 19 B$	$1.460(2)$
$\mathrm{C} 4 A-\mathrm{C} 15 A$	$1.545(3)$	$\mathrm{C} 4 B-\mathrm{C} 15 B$	$1.541(2)$
$\mathrm{C} 4 A-\mathrm{C} 16 A$	$1.544(3)$	$\mathrm{C} 4 B-\mathrm{C} 16 B$	$1.546(3)$
$\mathrm{C} 4 A-\mathrm{C} 5 A$			$1.566(2)$
$\mathrm{C} 12 A-\mathrm{O} 2 A-\mathrm{C} 18 A$	$117.61(19)$	$\mathrm{C} 12 B-\mathrm{O} 2 B-\mathrm{C} 18 B$	$116.89(14)$
$\mathrm{C} 15 A-\mathrm{N} 1 A-\mathrm{C} 19 A$	$120.34(15)$	$\mathrm{C} 15 B-\mathrm{N} 1 B-\mathrm{C} 19 B$	$122.46(15)$
$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{C} 15 A$	$117.98(15)$	$\mathrm{C} 5 B-\mathrm{C} 4 B-\mathrm{C} 15 B$	$113.92(14)$
$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{C} 16 A$	$109.55(15)$	$\mathrm{C} 5 B-\mathrm{C} 4 B-\mathrm{C} 16 B$	$109.45(14)$
$\mathrm{O} 2 A-\mathrm{C} 12 A-\mathrm{C} 11 A$	$115.13(19)$	$\mathrm{O} 2 B-\mathrm{C} 12 B-\mathrm{C} 13 B$	$124.18(17)$
$\mathrm{O} 2 A-\mathrm{C} 12 A-\mathrm{C} 13 A$	$124.42(19)$	$\mathrm{O} 2 B-\mathrm{C} 12 B-\mathrm{C} 11 B$	$115.91(16)$
$\mathrm{O} 1 A-\mathrm{C} 15 A-\mathrm{N} 1 A$	$120.03(17)$	$\mathrm{O} 1 B-\mathrm{C} 15 B-\mathrm{N} 1 B$	$120.97(16)$
$\mathrm{O} 1 A-\mathrm{C} 15 A-\mathrm{C} 4 A$	$121.72(15)$	$\mathrm{O} 1 B-\mathrm{C} 15 B-\mathrm{C} 4 B$	$120.05(16)$
$\mathrm{N} 1 A-\mathrm{C} 15 A-\mathrm{C} 4 A$	$118.14(15)$	$\mathrm{N} 1 B-\mathrm{C} 15 B-\mathrm{C} 4 B$	$118.83(15)$
$\mathrm{N} 1 A-\mathrm{C} 19 A-\mathrm{C} 20 A$	$113.14(16)$	$\mathrm{N} 1 B-\mathrm{C} 19 B-\mathrm{C} 20 B$	$111.61(15)$
$\mathrm{C} 19 A-\mathrm{N} 1 A-\mathrm{C} 15 A-\mathrm{O} 1 A$	$2.5(3)$	$\mathrm{C} 19 B-\mathrm{N} 1 B-\mathrm{C} 15 B-\mathrm{O} 1 B$	$-1.2(3)$

Figure 1
View of the two independent molecules of (I) in the asymmetric unit, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular packing of (I), viewed approximately down the c axis, showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (dashed lines) in the b-axis direction.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A C \cdots \mathrm{O} 1 B$	0.88	2.19	$2.9154(19)$	140
$\mathrm{~N} 1 B-\mathrm{H} 1 B C \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.88	2.23	$2.9802(19)$	143

Symmetry code: (i) $x, y-1, z$.

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The position of the amine- H atoms were constrained to an ideal geometry, with $\mathrm{N}-\mathrm{H}=0.88 \AA$

organic papers

and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometer.

References

Bakare, O., John, N., Butcher, R. J. \& Zalkow, L. H. (2005). Acta Cryst. E61, o3791-o3793.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Couldwell, M. C., Smith, R. A. J. \& Simpson, J. (1985). Acta Cryst. C41, $983-$ 985.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mondal, S., Mukherjee, M., Roy, A. \& Mukherjee, D. (2003). Acta Cryst. C59, o132-o134.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

